Инструкция. Неполадки. Безопасность. Приложения. Интернет
  • Главная
  • Инструкции
  • Аналоговый регулятор оборотов вентилятора с термоконтролем. Управляем вентилятором в компьютере - кулером (термоконтроль - на практике) Вопросы по изготовлению

Аналоговый регулятор оборотов вентилятора с термоконтролем. Управляем вентилятором в компьютере - кулером (термоконтроль - на практике) Вопросы по изготовлению

Предыстория

Наступило время навести порядок внутри системного блока. Шум от вентиляторов системы охлаждения процессора и видеокарты уже давно начал доставать своей назойливостью, особенно ночью. Даже при систематическом техобслуживании вентиляторов (чистка, смазка и т.п.) за 3 года своей работы они устарели как физически так и морально, требовались кардинальные меры по модернизации.

Убрать вентиляторы из системы охлаждения возможно только путем установки системы водяного охлаждения (СВО), но не в данном случае. Нет смысла на морально устаревшую машину ставить СВО, пойдем путем модернизации воздушной системы охлаждения. Просто убрать вентиляторы нельзя. Как известно, процессоры Pentium 4, даже младшие модели, выделяют большое количество тепла, компьютеру оно никчему, разве что греться от него, как это делает моя кошка:)

Во время морозов кошка спит на системном блоке. Итак, всё на борьбу с теплом и шумом!

Стратегия:

Снижение шума от вентиляторов, путем снижения их оборотов. В связи с этим вентиляторы должны быть большей производительности. Будем использовать вентиляторы 92×92 мм.
План работ:

    Замена боксового кулера Socket 478 на кулер от Socket 775

Внедрение системы термоконтроля

Система термоконтроля не поддерживается ни моей материнской платой, ни блоком питания, ни видеокартой. Поэтому придется сделать её самому. Полчаса серфинга по сети дали несколько статей по данному вопросу. Сразу скажу, что схемы на терморезисторах не рассматривались, почему-то у меня внутреннее отвращение к терморезисторам. Из всех возможных вариантов термоконтроля за основу была взята статься, которую написанная Михаил Наумов «Еще один вариант термоконтроля вентиляторов».

У меня был один компаратор LM311 (его отечественный аналог) и для проверки работоспособности схемы она была быстро собрана на макетке.

Готовая плата термоконтроля вентилятора

Плата заработала сразу, подстроечником устанавливаются обороты при холодном транзисторе. Выставляем минимальные обороты - вентилятора неслышно. Напряжение на выходе порядка 5,5В. После нагревания транзистора зажигалкой так, чтобы до него нельзя было дотронутся, вентилятор раскручивается почти на полную, напряжение порядка 8,9В.

После проверки работоспособности схемы нужно сделать пару систем: одну для процессора, вторую для блока питания, а та, что на макетке сгодится на видеокарту.

Итак, делаем печатную плату.

Для разводки печатной платы я использовал программу Sprint-Layout 4.0 . Очень хорошая бесплатная программа с русским интерфейсом и широкими возможностями печати. Скачивал по ссылке http://vrtp.ru/screenshots/161_Plata.zip . Минут через 15-20 и получаем разведенную плату под SMD компоненты. Скачать мою схему вы можете здесь же (файл board.lay)

Для изготовления плат я использую «ацетоновую» технологию вместо «утюжной». Тонер лазерного принтера помимо плавления, очень хорошо растворяется в ацетоне и при этом прилипает к меди (и не только к ней). Чтобы не покупать пол-литра ацетона, можно купить жидкость для снятия лака, которым пользуется прекрасная половина человечества, чтобы смывать лак с ногтей. Его можно взять у любимой девушки, жены, мамы, племянницы (нужное подчеркнуть).

Сначала зеркальное изображение разводки платы (благо позволяет программа) печатается на мелованном листе. Хорошо для этой цели подходят журналы, хотя можно использовать и факсовую бумагу.

Нам необходимы: напечатанная на лазерном принтере разводка плата, ацетон, вата, зачищенный мелкой наждачкой фольгированный текстолит.

Далее вырезаем напечатанное изображение, ватой обильно смоченной ацетоном протираем медь. Ждем пока подсохнет. Прикладываем тонером к меди изображение и той же ватой смачиваем бумагу, пока не увидим «проявившийся» сквозь нё рисунок платы. Смочить нужно равномерно всё изображение. Сильно переливать тоже нельзя, а то поплывет.

Смачиваем бумагу ацетоном. После того как изображение «проявилось», нужно дать испариться ацетону. При этом «изображение пропадет». Далее сухой бутерброд из текстолита и прилипшего к нему изображения под бумагой обильно смачиваем холодной водой.

Бумага размокнет и начнет «горбиться», это значит хватит. Далее отрываем бумагу, а тонер остается. На тонере останутся ворсинки от бумаги, их нужно удалить потерев рукой.

После того, как заготовка высохнет, она побелеет. Это от ацетона. Ничего страшного. Долее нужно вытравить ненужную медь. Для этого можно использовать несколько рецептов.

Один из вариантов - раствор медного купороса и поваренной соли в воде в соотношении столовая ложка купороса на две столовые ложки соли в пол-литре воды. Недостатки: в таком растворе процесс идет долго, порядка 2,5 часов, даже при условии поддержания высокой температуры или увеличении концентрации компонентов. Достоинства: доступность, медный купорос можно купить в любом хозяйственном магазине, соль — без слов. Второй вариант - раствор хлорного железа в воде в соотношении 1:2. Температура травления ~ 60-70ºС. Для поддержания высокой температуры я ставлю банку с раствором в ванну и пускаю горячую воду из шланга душа, чтобы она омывала банку. Недостатки: вредные испарения, которые выделяются в процессе травления, а так же тот факт, что при попадании раствора на руки или ванную, остаются желтые пятна, поэтому нужно действовать аккуратнее. Достоинства: в растворе хлорного железа травление происходит быстрее ~ 20 мин, при условии поддержания высокой температуры. Я использовал второй метод.

Перед травлением нужную часть будущей платы отрезаем ножницами по металлу и бросаем в раствор. Во время травления пластиковым пинцетом достаем плату из раствора и наблюдаем на процесс. По завершении травления готовую плату нужно промыть водой и высушить.

Процесс сборки платы вопросов не вызывает. Паяльник с тонким жалом, плюс паяльная паста и легкоплавкое олово минус дрожащие руки и через 20 минут получаем готовое изделие. После пайки используем тот же самый ацетон для отмывания остатков пасты с платы.

После завершения сборки подпаиваем вентилятор и проверяем работоспособность.

Перед включением питания проверяем на короткое замыкание. После подключения проверяем напряжение на входе, на стабилитроне, на вентиляторе. Вращая подстроечник, запускаем вентилятор на минимальных оборотах. Нагреваем зажигалкой транзистор и смотрим как вентиль раскручивается, остужаем его, вентилятор замедляется.

На фотографии нет выходного транзистора, а в реале он используется. При работе микросхема в SMD корпусе греется до 80ºС, пришлось поставить выходной транзистор. Хотя, при сборке на монтажке на микросхеме в DIP корпусе такого нагрева не было.Входной транзистор лучше «одеть» в термоусадку.

Эту плату будем использовать для управления вентилятором процессора и блока питания, для видеокарты используем собранную на монтажке плату.

Замена боксового кулера Socket 478 на кулер от LGA775

Для уменьшения шума от процессорного кулера согласно выбранной стратегии, его нужно перевести на 92 мм вентилятор. В продаже не нашлось кулера под Socket 478 с вентилятором 92x92 мм, самый большой был 80x80 мм. Вдруг возникла идея поставить кулер от LGA 775.

Смотрим:… не совпадают. Дальше смотрим на размер кулера под Socket 775 он всего на 4 мм с одной стороны больше рамки Socket 478. Там стоят конденсаторы, но их можно наклонить путем выпаивания одной из ножек. Идем в магазин и приобретаем кулер GlicialTech Igloo 5050 for Prescott 3.40 GHz, Socket LGA775. Это один из недорогих кулеров под Socket 775 с вентиляторов 92 мм.. Частота вращения 2800 rpm; шум 32dBA.

Итак, приступаем. Достаем материнскую плату из корпуса.

Снятый боксовый кулер отличается от приобретенного, но было бы слишком просто взять и заменить кулер без переделок.

Отличия существенны. Крепления тоже отличаются. Далее снимаем рамку с нашего сокета. Выдавливаем фиксаторы из креплений. Теперь конденсаторы, которые находятся справа нужно немного наклонить. Для этого выпаиваем одну из его ножек, чтобы конденсатор стоял под углом и не мешал новому кулеру.

Далее нам понадобится лобзик и акрил. Лобзик - это такая железяка в форме дуги с ручкой и натянутой пилочкой, для выпиливания фигурных деталей. Акрил, можно заменить алюминием, но обрабатывать будет сложнее.

Как видно из чертежей Intelа, отверстия крепления не совпадают настолько, что места крепления кулера на Socket 478 находятся между ногами кулера Socket 775. Это нам на руку. Вырезаем из акрила пластины, которые будут соединять ноки нового кулера и за эти пластины притянем его к материнской плате. Для снижения напряжения на материнскую плату, заодно вырезаем и подкладку под крепления кулера.

В ножках делаем потаи под винт с конусной головкой, чтобы он не доставал до материнской платы.

Прикручиваем вырезанные пластины к ножкам кулера.

И устанавливаем новый кулер на материнскую плату. Снизу под процессор ставим пластину для разгрузки. Затягиваем винты по диагонали, для равномерного распределения нагрузок и для того, чтобы избежать перегрузок.

Итак, результат: кулер из под Socket 775 «встал» на Socket 478 как родной, и конденсаторы почти не мешают. Затягивать нужно умеренно, чтобы не сломать материнскую плату, но и не допускать ослабления. Неплотное прилегание кулера к процессору может негативно сказаться на охлаждении.

Перед установкой кулера поверхность процессора была немного прошлифована при помощи кожи и пасты ГОИ до зеркального блеска. Термопаста использовалась та, которая была нанесена на кулер его производителем. В результате получился более производительный кулер с 92 мм вентилятором и системой термоконтроля. Температура процессора в процессе покоя составляет 44ºС, частота вращения вентилятора 1000 rpm. Во время загрузки процессора температура не поднималась выше 59ºС, при этом вентилятор вращался со скоростью 2300 rpm. В этом режиме его уже слышно, но меньше чем на максимальных 2800rpm. Итак, в корпусе стало заметно тише.

Замена радиатора и вентилятора в блоке питания

Вместе с корпусом neo мне достался блок питания Golden Power на 250Вт. Его мощности для моей системы вполне хватает, но шумит он сильно, и греется ужасно. Температура на одном из радиаторов внутри блока питания достигает 80ºС. После разборки стало ясно, что он (радиатор) маленький, а на нем висят «горячие» транзисторы.

Пришлось его(радиатор) отправить на заслуженный отдых. А для того чтобы поставить новый пришлось наклонить конденсатор, который стоял рядом.

Освободившийся радиатор от боксового кулера Intel Socket 478 было решено раскроить. От него было отпилено с одной стороны одна «секция» и с другой стороны две «секции». После шлифовки полученных радиаторов на них «поселились» выпаянные транзисторы. Их выводы нужно удлинить, так как радиатор будет стоять в «другой позе».

К ребрам большего радиатора крепим плату термоконтроля. Для изолирования винт крепится через текстолитовую шайбу. Вентилятор, который был установлен в блоке питания отправился в ящик с хламом, в результате чего в блоке питания стало свободней. Придерживаясь выбранной стратегии в верхней крышке блока питания было вырезано отверстие под вентилятор размером 92×92 мм. Вырезанное отверстие получилось не очень эстетичным, поэтому из красного акрила была вырезана декоративная панель, которая сделала вид блока питания более привлекательным и выровняла отверстие под вентилятор.

Вентилятор находится над самым жарким радиатором. После модернизации температура нового радиатора не поднималась больше 50ºС. И то, до такой температуры он нагревается при полной нагрузке. А так выглядят мои подопытные в корпусе.

Замена радиаторов и вентилятора на видеокарте

До начала модернизации моя карта GeForce4 MX 440 охлаждалась кулером от Socket 370, но вентилятор на нем был намного древнее вентилятора моего блока питания. Од даже заводился только после смазки. Было принято решение радиатор оставить, только установить правильно, а вентилятор отправить на свалку. Радиатор, а точнее то, что осталось от боксового радиатора Socket 478 был раскроен на маленькие для охлаждения памяти видеокарты, ведь с хорошим охлаждением можно погнать карту. После распиловки они были отшлифованы и подошвы их были отполированы.

Графический процессор был вымазан суперклеем, на него умельцы из сервисного центра наклеили суперклеем кулер от чипсета какой-то материнской платы. Пришлось его отшлифовать мелкой наждачкой и отполировать пастой ГОИ. После подготовки на микросхемы памяти через термопасту были установлены радиаторы. В качестве крепления были использованы кольца от бельевых прищепок, они очень хорошо прижимают радиаторы и не доставляют хлопот при установке.

Радиатор от Socket 370 был возвращен на место, через термопасту. Для крепления в нем вырезаны пазы и отверстия под гайку. Установке довольно огромного радиатора над графическим чипом мешали два конденсатора, в углах радиатора. Они были переставлены на противоположную сторону карты. Для установки 92 мм. вентилятора пришлось изготовить из акрила соотвестсвующие крепления.

Для того, чтобы правильно приклеить уши под вентилятор, поклейка производилась непосредственно на вентиляторе, воизбежании недоразумений.

После высыхания клея приступаем к сборке. Кронштейны устанавливаются на вентилятор. Затем вся конструкция надевается на карту и фиксируется винтом. Я думал что потребуется 2 винта, а оказалось достаточно одного. Второй заменила стяжка, которая держала провод от вентилятора. Между ребрами радиатора поселился транзистор платы термоконтроля вентилятора (которая была собрана на макетке).

А так выглядит новоиспеченный монстр в системном блоке.

После установки такого охлаждения грех было не попробовать погнать карту. Сильно разгонять ее не имеет смысла, все равно конвейеров в ней не прибавится да и аппаратная поддержка DirectX9.0 не появится. Таким образом частоты графического процессора и памяти были немного подняты. Частота графического ядра была поднята с 270 до 312 МГц, а частота памяти с 400 до 472 МГц. Такой разгон не каких отрицательных последствий не вызвал.

Обзор универсального 10-гигабитного коммутатора QNAP QSW-1208-8C

У этого свитча нет конкурента с таким же числом портов и поддержкой 2.5GBase-T и 5GBase-T. Мы протестировали данную модель на совместимость с имеющимися сетевыми картами и кабелями, а так же измерили производительность.

Данная статья поможет в создании простого и в тоже время надежного устройства термоконтроля для "нагревающейся" аппаратуры (усилители, блоки питания и любых деталей, использующие радиаторы)
Принцип работы прост... терморезистор термопастой и скобой прижимается к радиатору, выставляется максимально допустимая температура, и как только радиатор нагреется до этой температуры включится вентилятор и будет охлаждать радиатор до того момента пока на терморезисторе не упадет температура.
Отличное решение для охлаждения усилителя, ведь если слушать музыку на тихой громкости охлаждение вентилятором и не нужно, незачем создавать лишний шум. А как только усилитель будет работать на высокой мощности и радиатор нагреется до максимально допустимой температуры в работу включится вентилятор. Максимально допустимая температура устанавливается или "на ощупь" или с помощью термометра. В моем случае метода "на ощупь" вполне хватило.

Схема:


Фото:

А теперь по схеме. Подстроечный резистор регулирует порог срабатывания вентилятора. Терморезистор советского происхождения, стоит копейки:


Операционный усилитель LM324 (4х канальный ОУ) можно заменить на LM358 (двухканальный ОУ) выиграете в размере.. но в цене они не отличаются... Вентилятор - обычный компьютерный на 12V... Транзистор можно заменить на любой похожий этой структуры. Больше то и добавить нечего...

Печатная плата четырехканальная, транзисторы заменены на более мощные BC639, на глупые вопросы "почему плата не соответствует схеме" не отвечаю:

Вариант крепления к радиатору.

Данная статья является результатом эксперимента и не служит руководством к действию. Автор не несет никакой ответственности за поломку любого аппаратного обеспечения вашего компьютера, а также за сбои и "глюки" в работе любого программного обеспечения, установленного на вашем компьютере.

В настоящее время все чаще можно встретить на прилавках в интернет-магазинах и на рынке разнообразные компьютерные аксессуары. Серия аксессуаров Thermaltake Hardcano представляет широкий спектр интерфейсных устройств, а также устройств контроля / охлаждения / и т.д.

Не так давно видел на рынке Thermaltake Hardcano 7. Что это такое? Это алюминиевая заглушка на 5.25 дюймовый отсек компьютера, на передней панели которой расположены разъемы для одного порта IEEE1394 и двух USB, движковый переключатель на три положения для регулировки оборотов вентилятора (L-M-H), а также ЖКИ-панель термометра. Термометр питается от батарейки-таблетки. Весь крепеж и шнуры - в комплекте. Стоит эта штука 20 долларов США. Ну, порты постольку - поскольку, ведь пользователей, которые каждый день дома подключают / отключают цифровые фотоаппараты, сканнеры, мыши посредством интерфейса USB не так много. Переключатель оборотов дополнительно устанавливаемых в системный блок компьютера вентиляторов (FanBus) актуален для оверклокеров, которые стараются выжать как можно больше мегагерц из своего железа, и, которое в свою очередь, нуждается в более интенсивном охлаждении и хорошей циркуляции воздуха внутри системного блока.

Удачных технических решений, доступных для изготовления мануально (в домашних условиях) можно найти куда больше на англо- и русскоязычных интернет-ресурсах, посвященных данной тематике, к тому же не только FanBus, но и RheoBus и т.д. А вот термометр – это вещь нужная. Но отдавать 20 долларов США за термометр – это не есть гууд. И идея пришла ко мне в голову не отходя от прилавка ларька: спаять термометр самому. А лучше два термометра - как у Thermaltake Hardcano 2, который и послужил прототипом. Но настраивать их придется тщательнее, т.к. расхождения в показаниях двух термометров Thermaltake Hardcano (при прочих равных условиях) может составлять несколько градусов.

Радиотехникой я занимаюсь уже очень давно - так что, опыт есть. В течение 3-х дней было просмотрено около десятка схем цифровых термометров, и, в качестве наиболее подходящей была выбрана принципиальная схема термометра . Судя по заявленным параметрам - это то, что надо. Да, и элементная база тех времен сейчас уже общедоступна. В статье приведен рисунок печатной платы, но я его повторять не стал – разработал свой. На следующий день были куплены все необходимые радиокомпоненты на радиорынке (на все - про все я потратил 9 долларов США, что в два раза дешевле прототипа) и были изготовлены три печатные платы: две для двух термометров

третья - для ЖКИ-панелей

Вид со стороны пайки элементов:

И вид со стороны монтажа элементов:

Вид со стороны монтажа элементов крупным планом:

Процесс налаживания и тестирования термометра описан в . Единственное, на чем хочется заострить ваше внимание - это связь атмосферного давления и температуры кипения воды, которое сильно зависит от высоты над уровнем моря. Наши термометры должны быть настроены точно, т.к. мы ведь собираемся измерять температуру микросхем нашего "железного друга", а не окружающей среды.

Я замерял атмосферное давление барометром, поместив его на подставке около стакана с закипающей водой на одном уровне с поверхностью жидкости. У меня на столе атмосферное давление составило 728 мм.рт.ст. В приведена температура кипения воды в 100 o С при атмосферном давлении 760мм.рт.ст. У нас же разница в двух значениях атмосферного давления значимая (целых 32 мм.рт.ст., а это 1.5 o С). Интересно, при какой температуре будет кипеть вода в нашем случае? Не при 100 o С – так это точно.

Прибегнув к помощи математического аппарата из области молекулярной физики и теплофизики, я получил, что при атмосферном давлении 728 мм.рт.ст. вода кипит уже при температуре 98.28 o С, а расчет по формулам дает температуру кипения воды в 100 o С только при атмосферном давлении 775,0934286 мм.рт.ст. Промышленный термометр, помещенный в стакан с кипящей водой показывал 98.4 o С.

Я, честно говоря, больше доверяю математике, нежели какому-то . Если нет барометра, то величину атмосферного давления вы можете узнать, например, в Гидрометцентре.

Формулы для расчета имеют вид:

Таким образом, в формулу (2) подставляем температуру кипения воды в градусах Цельсия и, полученное значение Т подставляем в формулу (1) . Т.е. мы получаем искомое давление Р. Для того, чтобы узнать при какой температуре должна кипеть вода при заданном давлении, достаточно эти две формулы "загнать" в Excel и методом подбора температуры добиться минимального расхождения между действующим атмосферным давлением {в мм.рт.ст} и расчетным.

Наша задача – добиться минимального расхождения в показаниях двух термометров (при прочих равных условиях). У меня расхождение в показаниях либо отсутствовало вообще, либо составляло 0.1 o С, а это соответствует заявленной автором погрешности измерения температуры в середине температурного диапазона. Весь диапазон измеряемых температур составляет -60...+100 o С. На самом же деле термометр способен измерять температуру как более "горячих" объектов, так и "холодных".

Мои термометры легко измеряли температуру жала паяльника при разогреве и показывали 175 o С. Почти также легко была измерена температура "подогретых" паров жидкого азота – она составила -78 o С (контрольные замеры проводились параллельно при помощи термопары в одной и той же точке с термодатчиком), хотя температура самого жидкого азота составляет -190 o С, я все же не решился окунать термодатчик в жидкость из-за угрозы его разрушения и, как следствие, небольшого местного закипания жидкого азота с выбросом капель (а то было бы как в фильме "Терминатор-2":-).

Как видите, диапазон измеряемых температур в некоторой степени определяется типом используемого датчика температуры, но есть и ограничения в диапазоне, заложенные в принципиальной электрической схеме термометра: реально возможно измерение температур в диапазоне от -100 o С до +199.9 o С при наличии соответствующего датчика температуры, например, термопары. Но при использовании термопары придется значительно видоизменять принципиальную электрическую схему термометра.

Для установки плат термометров я использовал металлическое шасси от испорченного привода CD-ROM.

Спереди к шасси крепится пустая заглушка от вашего системного блока с прорезанными дремелем окнами для ЖКИ-панелей, на которую предварительно устанавливается печатная плата с запаянными ЖКИ-панелями.

В качестве ограничителей высоты (стоек) использованы полиэтиленовые втулки фильтров от сигарет "West".

На заглушку, к которой при помощи винтов прикреплена печатная плата с ЖКИ-панелями, крепится фальш-панель с проточенными углублениями с внутренней стороны под шляпки винтов. Для крепления фальш-панели я использовал клей на основе дихлорэтана.

Фальш-панель можно и не изготавливать, если для крепления ЖКИ-панелей к заглушке использовать пластмассовые стойки, прикрепленные к заглушке с внутренней стороны при помощи какого-либо клея, например, на основе того же дихлорэтана. Печатные платы термометров крепятся непосредственно к шасси на латунных стойках.

На одну из плат термометров питание подается посредством MOLEX-переходника "папа – две мамы" у которого выводы питания от одной "мамы" запаяны непосредственно в печатную плату.

Для питания термометров использованы выводы на 12V. Для получения напряжения питания 9V использован стабилизатор КРЕН9А. Если Вы хотите, чтобы температура отображалась и при выключенном питании компьютера, можно подключить батарею типа "Крона" через диод.

Термодатчики, которые я использовал в своей конструкции, отличаются от использованных автором. И, как следствие, мне пришлось пересчитывать сопротивления резисторов в делителях напряжений. Пересчитанные номиналы резисторов значительно отличаются от номиналов, приведенных на принципиальной схеме.

Датчики температуры крепятся куда вам будет угодно. Самое простое устройство крепления термодатчиков – прижим температурного датчика посредством деревянной бельевой прищепки, но ее надо существенно доработать. Для крепления термодатчиков я использовал кусок эбонита цилиндрической формы диаметром 16 мм с просверленным перпендикулярно продольной оси симметрии отверстием круглой формы под радиус терморезистора. По продольной оси симметрии был также проточен дремелем паз для крепления датчика с торца печатных плат. Это обеспечивает максимальную легкость в установке на планку RAM...

и на VideoRAM...

с торца печатной платы видеокарты, а также плотное прилегание термодатчика к микросхеме (при использовании бельевой прищепки сила прижима заметно выше, поэтому смотрите – не перестарайтесь – так можно и термодатчик раздавить) и надежное крепление всей системы в целом.

У прижима для крепления датчика на видео карте (у меня Radeon 9100 noname) спилен один "зуб", т.к. на моей видеокарте установлены микросхемы видеопамяти в "уходящих в историю" корпусах и с обратной стороны под микросхемами запаяно очень много бескорпусной мелочи.

У Вас же память может стоять в корпусах BGA, причем, с двух сторон печатной платы зеркально. В этом случае толщины в 16 мм может не хватить.

Для крепления датчика на планке RAM я использовал симметричный прижим. Планка памяти RAM с закрепленным датчиком температуры приведена на фото:

Еще один вариант крепления датчика температуры – офисные "крокодилы", которыми скрепляется толстая пачка страниц различного формата. В этом случае придется проложить твердый нетолстый диэлектрик между нижней частью прижима и печатной платой видеокарты, чтобы избежать выхода из строя последней.

Пластмассы для изготовления прижимов не годятся, т.к. нам нужно, чтобы периодическое нагревание/охлаждение не приводило к изменению линейных размеров прижима термодатчика. Можно, конечно, использовать и капролон (тоже диэлектрик), но это очччень твердый материал и его обработка весьма трудоемкая. Ширину внутреннего паза, пропиленного по продольной оси симметрии прижима, следует подбирать практически – приложение незначительных усилий при "надевании" прижима на планку памяти может дорогого стоить из-за мизерной разницы в высоте монтажа микросхем памяти на планке в 0.055 мм.

Удобнее всего термодатчик крепится между ребрами радиаторов охлаждения чипсетов материнских плат, видеокарт и т.д.

Теперь, когда все установлено надлежащим образом и все работает, видно, что на штатных частотах (250/250) температура VideoRAM составляет 31.7 o С, а на повышенных частотах (300/285) температура VideoRAM составила 38.3 o С при выполнении 3DMark2001SE /1024х768х32/. Температура RAM /Mtec 256Mb/ 40.4 o С и 49 o С соответственно.

На индикаторе слева отображается температура VideoRAM, на индикаторе справа – температура оперативной RAM примерно через минуту после включения компьютера.

Литература:

  1. В.Суетин, Радио № 10, 1991 г., с.28 ( http://m33gus.narod.ru/G_RADIO/1991/10/og199110.html)
  2. А.С.Енохович, М., Просвещение, Справочник по физике и технике, 1989г., с.115
Удачного моддинга Вам.
Апранич Сергей aka Pryanick
[email protected]

Тем, кто использует компьютер каждый день (и особенно каждую ночь), очень близка идея Silent PC. Этой теме посвящено много публикаций, однако на сегодняшний день проблема шума, производимого компьютером, далека от решения. Одним из главных источников шума в компьютере является процессорный кулер. При использовании программных средств охлаждения, таких как CpuIdle, Waterfall и прочих, или же при работе в операционных системах Windows NT/2000/XP и Windows 98SE средняя температура процессора в Idle-режиме значительно понижается. Однако вентилятор кулера этого не знает и продолжает трудиться в полную силу с максимальным уровнем шума. Конечно, существуют специальные утилиты (SpeedFan, например), которые умеют управлять оборотами вентиляторов. Однако работают такие программы далеко не на всех материнских платах. Но даже если и работают, то, можно сказать, не очень разумно. Так, на этапе загрузки компьютера даже при относительно холодном процессоре вентилятор работает на своих максимальных оборотах. Выход из положения на самом деле прост: для управления оборотами крыльчатки вентилятора можно соорудить аналоговый регулятор с отдельным термодатчиком, закрепленным на радиаторе кулера. Вообще говоря, существует бесчисленное множество схемотехнических решений для таких терморегуляторов . Но нашего внимания заслуживают две наиболее простых схемы термоконтроля, с которыми мы сейчас и разберемся.

Описание

Если кулер не имеет выхода таходатчика (или же этот выход просто не используется), можно построить самую простую схему, которая содержит минимальное количество деталей (рис. 1).


Рис. 1. Принципиальная схема первого варианта терморегулятора

Ещё со времен "четверок" использовался регулятор, собранный по такой схеме. Построен он на основе микросхемы компаратора LM311 (отечественный аналог - КР554СА3). Несмотря на то, что применен компаратор, регулятор обеспечивает линейное, а не ключевое регулирование. Может возникнуть резонный вопрос: "Как так получилось, что для линейного регулирования применяется компаратор, а не операционный усилитель?". Ну, причин этому есть несколько. Во-первых, данный компаратор имеет относительно мощный выход с открытым коллектором, что позволяет подключать к нему вентилятор без дополнительных транзисторов. Во-вторых, благодаря тому, что входной каскад построен на p-n-p транзисторах, которые включены по схеме с общим коллектором, даже при однополярном питании можно работать с низкими входными напряжениями, находящимися практически на потенциале земли. Так, при использовании диода в качестве термодатчика нужно работать при потенциалах входов всего 0.7 В, что не позволяют большинство операционных усилителей. В-третьих, любой компаратор можно охватить отрицательной обратной связью, тогда он будет работать так, как работают операционные усилители (кстати, именно такое включение и использовано).

В качестве датчика температуры очень часто применяют диоды. У кремниевого диода p-n переход имеет температурный коэффициент напряжения примерно -2.3 мВ/°C, а прямое падение напряжения - порядка 0.7 В. Большинство диодов имеют корпус, совсем неподходящий для их закрепления на радиаторе. В то же время некоторые транзисторы специально приспособлены для этого. Одними из таких являются отечественные транзисторы КТ814 и КТ815. Если подобный транзистор привинтить к радиатору, коллектор транзистора окажется с ним электрически соединенным. Чтобы избежать неприятностей, в схеме, где этот транзистор используется, коллектор должен быть заземлен. Исходя из этого, для нашего термодатчика нужен p-n-p транзистор, например, КТ814.

Можно, конечно, просто использовать один из переходов транзистора как диод. Но здесь мы можем проявить смекалку и поступить более хитро. Дело в том, что температурный коэффициент у диода относительно низкий, а измерять маленькие изменения напряжения достаточно тяжело. Тут вмешиваются и шумы, и помехи, и нестабильность питающего напряжения. Поэтому часто, для того чтобы повысить температурный коэффициент датчика температуры, используют цепочку последовательно включенных диодов. У такой цепочки температурный коэффициент и прямое падение напряжения увеличиваются пропорционально количеству включенных диодов. Но ведь у нас не диод, а целый транзистор! Действительно, добавив всего два резистора, можно соорудить на транзисторе двухполюсник, поведение которого будет эквивалентно поведению цепочки диодов. Что и сделано в описываемом терморегуляторе.

Температурный коэффициент такого датчика определяется отношением резисторов R2 и R3 и равен Tcvd*(R3/R2+1), где Tcvd - температурный коэффициент одного p-n перехода. Повышать отношение резисторов до бесконечности нельзя, так как вместе с температурным коэффициентом растет и прямое падение напряжения, которое запросто может достигнуть напряжения питания, и тогда схема работать уже не будет. В описываемом регуляторе температурный коэффициент выбран равным примерно -20 мВ/°C, при этом прямое падение напряжения составляет около 6 В.

Датчик температуры VT1R2R3 включен в измерительный мост, который образован резисторами R1, R4, R5, R6. Питается мост от параметрического стабилизатора напряжения VD1R7. Необходимость применения стабилизатора вызвана тем, что напряжение питания +12 В внутри компьютера довольно нестабильное (в осуществляется лишь групповая стабилизация выходных уровней +5 В и +12 В).

Напряжение разбаланса измерительного моста прикладывается к входам компаратора, который используется в линейном режиме благодаря действию отрицательной обратной связи. Подстроечный резистор R5 позволяет смещать регулировочную характеристику, а изменение номинала резистора обратной связи R8 позволяет менять ее наклон. Емкости C1 и C2 обеспечивают устойчивость регулятора.

Смонтирован регулятор на макетной плате, которая представляет собой кусочек одностороннего фольгированного стеклотекстолита(рис.2).

классической" конструкции, а вот крепление ее к радиаторам цилиндрической формы (например, как у Orb-ов) может вызвать проблемы. Хороший тепловой контакт с радиатором должен иметь только транзистор термодатчика. Поэтому если вся плата целиком не умещается на радиаторе, можно ограничится установкой на нем одного транзистора, который в этом случае подключают к плате с помощью проводов. Саму плату можно расположить в любом удобном месте. Закрепить транзистор на радиаторе несложно, можно даже просто вставить его между ребер, обеспечив тепловой контакт с помощью теплопроводящей пасты. Еще одним способом крепления является применение клея с хорошей теплопроводностью.

При установке транзистора термодатчика на радиатор, последний оказывается соединенным с землей. Но на практике это не вызывает особых затруднений, по крайней мере, в системах с процессорами Celeron и PentiumIII (часть их кристалла, соприкасающаяся с радиатором, не имеет электрической проводимости).

Электрически плата включается в разрыв проводов вентилятора. При желании можно даже установить разъемы, чтобы не разрезать провода. Правильно собранная схема практически не требует настройки: нужно лишь подстроечным резистором R5 установить требуемую частоту вращения крыльчатки вентилятора, соответствующую текущей температуре. На практике у каждого конкретного вентилятора существует минимальное напряжение питания, при котором начинает вращаться крыльчатка. Настраивая регулятор, можно добиться вращения вентилятора на минимально возможных оборотах при температуре радиатора, скажем, близкой к окружающей. Тем не менее, учитывая то, что тепловое сопротивление разных радиаторов сильно отличается, может потребоваться корректировка наклона характеристики регулирования. Наклон характеристики задается номиналом резистора R8. Номинал резистора может лежать в пределах от 100 К до 1 М. Чем больше этот номинал, тем при более низкой температуре радиатора вентилятор будет достигать максимальных оборотов. На практике очень часто загрузка процессора составляет считанные проценты. Это наблюдается, например, при работе в текстовых редакторах. При использовании программного кулера в такие моменты вентилятор может работать на значительно сниженных оборотах. Именно это и должен обеспечивать регулятор. Однако при увеличении загрузки процессора его температура поднимается, и регулятор должен постепенно поднять напряжение питания вентилятора до максимального, не допустив перегрева процессора. Температура радиатора, когда достигаются полные обороты вентилятора, не должна быть очень высокой. Конкретные рекомендации дать сложно, но, по крайней мере, эта температура должна "отставать" на 5 - 10 градусов от критической, когда уже нарушается стабильность системы.

Да, еще один момент. Первое включение схемы желательно производить от какого-либо внешнего источника питания. Иначе, в случае наличия в схеме короткого замыкания, подключение схемы к разъему материнской платы может вызвать ее повреждение.

Теперь второй вариант схемы. Если вентилятор оборудован таходатчиком, то уже нельзя включать регулирующий транзистор в "земляной" провод вентилятора. Поэтому внутренний транзистор компаратора здесь не подходит. В этом случае требуется дополнительный транзистор, который будет производить регулирование по цепи +12 В вентилятора. В принципе, можно было просто немного доработать схему на компараторе, но для разнообразия была сделана схема, собранная на транзисторах, которая оказалась по объему даже меньше (рис.3).

Рис. 3. Принципиальная схема второго варианта терморегулятора

Поскольку размещенная на радиаторе плата нагревается вся целиком, то предсказать поведение транзисторной схемы довольно сложно. Поэтому понадобилось предварительное моделирование схемы с помощью пакета PSpice. Результат моделирования показан на рис. 4.

http://pandia.ru/text/80/325/images/image005_23.gif" width="584" height="193 src=">

Рис. 5. Монтажная схема второго варианта терморегулятора

Конструкция аналогична первому варианту, за исключением того, что плата имеет немного меньшие размеры. В схеме можно применить обычные (не SMD) элементы, а транзисторы - любые маломощные, так как ток, потребляемый вентиляторами, обычно не превышает 100 мА. Замечу, что эту схему можно использовать и для управления вентиляторами с большим значением потребляемого тока, но в этом случае транзистор VT4 необходимо заменить на более мощный. Что же касается вывода тахометра, то сигнал тахогенератора TG напрямую проходит через плату регулятора и поступает на разъем материнской платы. Методика настройки второго варианта регулятора ничем не отличается от методики, приведенной для первого варианта. Только в этом варианте настройку производят подстроечным резистором R7, а наклон характеристики задается номиналом резистора R12.

Практическое использование терморегулятора (совместно с программными средствами охлаждения) показало его высокую эффективность в плане снижения шума, производимого кулером. Однако и сам кулер должен быть достаточно эффективным. Например, в системе с процессором Celeron566, работающем на частоте 850 МГц, боксовый кулер уже не обеспечивал достаточной эффективности охлаждения, поэтому даже при средней загрузке процессора регулятор поднимал напряжение питания кулера до максимального значения. Ситуация исправилась после замены вентилятора на более производительный, с увеличенным диаметром лопастей. Сейчас полные обороты вентилятор набирает только при длительной работе процессора с практически 100% загрузкой.

Всем привет)
Сегодня от меня обзор хорошего паяльника с регулировкой температуры.
Кому интересно - добро пожаловать под кат.
А там разборка, замеры и небольшая доработка…
Паяльник предоставлен для обзора, п.18

Характеристики паяльника:

Мощность: 40Вт
Температура: 200...450°C
Входное напряжение: 220...240В
Длина: 250мм

Комплект поставки, внешний вид.

Поставляется в блистере, кроме паяльника ничего в комплекте нет.


Пара дополнительных жал разного типа очень бы не помешали…




По габаритам схож с Gj-907


Регулятор температуры меньше, расположен ближе к проводу, что гораздо удобнее. В 907-ом он больше и находится прямо в зоне хвата за ручку, часто случайно сбивается.

Длина провода 140 см, на конце «вражеская» вилка.


Сам провод толстый, жесткий и тяжелый. Точно как от системника. Надежность, это конечно хорошо, но не в данном случае.


Под внешней изоляцией - 3 жилы, заземление жала используется «прямо из розетки». Для сравнения в 907-ом провод двухжильный, заземление нужно отдельно цеплять крокодилом.


Вилку я заменил, да и вообще, для человека, который покупает паяльник, эта процедура не составит труда. Позже найду подходящий провод - заменю и его, с более тонким работать будет гораздо удобнее.

Жало, нагревательный элемент

Жало у паяльника съемное, необгораемое.


На странице товара жало острое конусное, а мне пришел паяльник с похожим на 2CR из этой картинки



Лично мне такое жало удобнее использовать при пайке выводных компонентов, проводов, чем острое. Тем более паяльник с острым у меня есть. Кому нужно жало именно такое, как на картинке магазина - имейте это ввиду.


Кончик жала хорошо магнитится, а та часть, куда входит нагреватель - очень слабо.
Под необгораемым покрытием - медь (сточил немного напильником)







Меняется оно просто, нужно открутить кожух.


Нагревательный элемент - нихромовый в керамической трубке


Диаметр - 5,2 мм, длина - 73 мм.


От нагревателя выходит 4 провода - 2 провода для нагревательного элемента и 2 провода для термодатчика. Сопротивление нагревательного элемента 950 Ом (два белых провода).




Жало «садится» до конца, ограничительная втулка при установке не приподнимает его над кончиком нагревателя.

Внутренний диаметр жала - 5,5 мм, а нагревателя 5,2 мм, т.е. есть зазор.
В принципе, из коробки паяльник работает и так, но после часа-двух работы я осмотрел нагреватель и обнаружил место контакта с жалом.


Воздушная прослойка явно не способствует передаче тепла к жалу.
Поэтому я намотал 3 слоя тонкой алюминиевой фольги, для более плотной посадки.

Доработка крайне простая и эффективная, занимает буквально пару минут. Последующие замеры проводились уже с ней.

Плата термоконтроля

Судя по плате и 4-м проводам от нагревателя здесь реализована обратная связь по термопаре, а не просто регулировка подаваемой к нагревателю мощности. Т.е. она должна поддерживать именно выставленную температуру, а не мощность нагревателя, что мы позже и проверим.


Элементная база очень схожа с хорошо себя зарекомендовавшим среди недорогих паяльников CT-96.
Операционный усилитель

Симистор для управления нагревателем

На плате присутствует подстроечник для более точной регулировки температуры, но я его не трогал, не пришлось)
В плане ремонтнопригодности паяльник хорош, дефицитных деталей нет, деталей в SMD корпусах тоже нет. В случае выхода из строя можно без проблем заменить перегоревшую деталь.

Измерение температуры

Вот и подобрались к самой важной части обзора.
Пару слов о способе измерения.
Для подобных целей есть специализированные устройства, но у меня к сожалению такого нет.


Но зато есть обычный бесконтактный термометр, он же пирометр. Он не совсем пригоден, конечно, для подобных измерений, т.к. очень сильно врет на блестящих металлических поверхностях и пятно измерения гораздо больше кончика жала.
Я попробовал снять кожух жала и покрасил толстую часть жала маркером. Но даже этого оказалось недостаточно, она все равно была уже отверстия сенсора. Значения были ориентировочно процентов на 40 ниже.
Тогда пришлось пошевелить извилинами и придумать, как его заставить мерить температуру жала. Я ничего лучше не придумал, как вырезать из фольги небольшой круг (по диаметру отверстия в пирометре, слишком большой был бы радиатором), и покрасить его черным нитромаркером. Затем положил его на толстую часть жала и немного обогнул его по радиусу жала (для большей площади контакта и лучшей теплопроводности). Вот что вышло


Во время нагрева горит красный светодиод, по достижению заданной гаснет.
Время разогрева с комнатной температуры до выставленной 200°C составляет около минуты минуты.
Для начала выставил 200 градусов, подождал пока хорошо прогреется фольга, затем замерял.
Заранее извиняюсь за фото, т.к. значения на пирометре держатся пару секунд, нужно успеть поднести к паяльнику и сфокусироваться камере.



Теперь 250 °C



И 300 °C


Как видим, паяльник с завода отлично откалиброван (к подстроечнику даже не прикасался) и также отлично держит заданную температуру! Причем результаты получены с 1-го раза, выставил температуру, подождал, замерял, сфотографировал. Потом следующее значение, и т.д. Честно говоря, не ожидал за такую стоимость… приятно удивлен. Читая обзоры аналогичных паяльников собранных практически из тех же компонентов, я был готов к перегреву, недогреву, отклонениями от выставленной температуры на 30-50 градусов и калибровке подстроечным резистором. Но ничего этого не было и делать не пришлось.
Но, повторюсь, замеры проводил уже с фольгой на нагревателе, что улучшает теплообмен между жалом и нагревателем.

Заключение:

Буду краток, все и так подробно изложено в обзоре.
Вполне хороший паяльник, с честной регулировкой температуры, хорошо откалиброван с завода. Также мне понравилось работать комплектным жалом и расположение регулятора. В плюсы можно еще отнести высокую ремонтопригодность.
Однако, для более комфортной работы вместе с вилкой желательно заменить и жесткий провод, а также провести крайне простую доработку в виде намотки фольги на нагреватель.

П.С. остается открытым вопрос по дополнительным жалам, я так подозреваю, что подойдут вот

Лучшие статьи по теме