Инструкция. Неполадки. Безопасность. Приложения. Интернет
  • Главная
  • Неполадки
  • Горизонтальное масштабирование. Что, зачем, когда и как? Масштабируемость корпоративных информационных систем Масштабируемость системы

Горизонтальное масштабирование. Что, зачем, когда и как? Масштабируемость корпоративных информационных систем Масштабируемость системы

С ростом популярности web-приложения его поддержка неизбежно начинает требовать всё больших и больших ресурсов. Первое время с нагрузкой можно (и, несомненно, нужно) бороться путём оптимизации алгоритмов и/или архитектуры самого приложения. Однако, что делать, если всё, что можно было оптимизировать, уже оптимизировано, а приложение всё равно не справляется с нагрузкой?

Оптимизация

Первым делом стоит сесть и подумать, а всё ли вам уже удалось оптимизировать:
  • оптимальны ли запросы к БД (анализ EXPLAIN, использование индексов)?
  • правильно ли хранятся данные (SQL vs NoSQL)?
  • используется ли кеширование?
  • нет ли излишних запросов к ФС или БД?
  • оптимальны ли алгоритмы обработки данных?
  • оптимальны ли настройки окружения: Apache/Nginx, MySQL/PostgreSQL, PHP/Python?
О каждом из этих пунктов можно написать отдельную статью, так что детальное их рассмотрение в рамках данной статьи явно избыточно. Важно лишь понимать, что перед тем как приступить к масштабированию приложения, крайне желательно максимально оптимизировать его работу – ведь возможно тогда никакого масштабирования и не потребуется.

Масштабирование

И так, допустим, что оптимизация уже проведена, но приложение всё равно не справляется с нагрузкой. В таком случае решением проблемы, очевидно, может послужить разнесение его по нескольким хостам, с целью увеличения общей производительности приложения за счёт увеличения доступных ресурсов. Такой подход имеет официальное название – «масштабирование» (scale) приложения. Точнее говоря, под «масштабируемостью » (scalability) называется возможность системы увеличивать свою производительность при увеличении количества выделяемых ей ресурсов. Различают два способа масштабирования: вертикальное и горизонтальное. Вертикальное масштабирование подразумевает увеличение производительности приложения при добавлении ресурсов (процессора, памяти, диска) в рамках одного узла (хоста). Горизонтальное масштабирование характерно для распределённых приложений и подразумевает рост производительности приложения при добавлении ещё одного узла (хоста).

Понятно, что самым простым способом будет простое обновление железа (процессора, памяти, диска) – то есть вертикальное масштабирование. Кроме того, этот подход не требует никаких доработок приложения. Однако, вертикальное масштабирование очень быстро достигает своего предела, после чего разработчику и администратору ничего не остаётся кроме как перейти к горизонтальному масштабированию приложения.

Архитектура приложения

Большинство web-приложений априори являются распределёнными, так как в их архитектуре можно выделить минимум три слоя: web-сервер, бизнес-логика (приложение), данные (БД, статика).

Каждый их этих слоёв может быть масштабирован. Поэтому если в вашей системе приложение и БД живут на одном хосте – первым шагом, несомненно, должно стать разнесение их по разным хостам.

Узкое место

Приступая к масштабированию системы, первым делом стоит определить, какой из слоёв является «узким местом» - то есть работает медленнее остальной системы. Для начала можно воспользоваться банальными утилитами типа top (htop) для оценки потребления процессора/памяти и df, iostat для оценки потребления диска. Однако, желательно выделить отдельный хост, с эмуляцией боевой нагрузки (c помощью или JMeter), на котором можно будет профилировать работу приложения с помощью таких утилит как xdebug , и так далее. Для выявления узких запросов к БД можно воспользоваться утилитами типа pgFouine (понятно, что делать это лучше на основе логов с боевого сервера).

Обычно всё зависит от архитектуры приложения, но наиболее вероятными кандидатами на «узкое место» в общем случае являются БД и код. Если ваше приложение работает с большим объёмом пользовательских данных, то «узким местом», соответственно, скорее всего будет хранение статики.

Масштабирование БД

Как уже говорилось выше, зачастую узким местом в современных приложениях является БД. Проблемы с ней делятся, как правило, на два класса: производительность и необходимость хранения большого количества данных.

Снизить нагрузку на БД можно разнеся её на несколько хостов. При этом остро встаёт проблема синхронизации между ними, решить которую можно путём реализации схемы master/slave с синхронной или асинхронной репликацией. В случае с PostgreSQL реализовать синхронную репликацию можно с помощью Slony-I , асинхронную – PgPool-II или WAL (9.0). Решить проблему разделения запросов чтения и записи, а так же балансировки нагрузку между имеющимися slave’ами, можно с помощью настройки специального слоя доступа к БД (PgPool-II).

Проблему хранения большого объёма данных в случае использования реляционных СУБД можно решить с помощью механизма партицирования (“partitioning” в PostgreSQL), либо разворачивая БД на распределённых ФС типа Hadoop DFS .

Однако, для хранения больших объёмов данных лучшим решением будет «шардинг » (sharding) данных, который является встроенным преимуществом большинства NoSQL БД (например, MongoDB).

Кроме того, NoSQL БД в общем работают быстрее своих SQL-братьев за счёт отсутствия overhead’а на разбор/оптимизацию запроса, проверки целостности структуры данных и т.д. Тема сравнения реляционных и NoSQL БД так же довольно обширна и заслуживает .

Отдельно стоит отметить опыт Facebook, который используют MySQL без JOIN-выборок. Такая стратегия позволяет им значительно легче масштабировать БД, перенося при этом нагрузку с БД на код, который, как будет описано ниже, масштабируется проще БД.

Масштабирование кода

Сложности с масштабированием кода зависят от того, сколько разделяемых ресурсов необходимо хостам для работы вашего приложения. Будут ли это только сессии, или потребуется общий кеш и файлы? В любом случае первым делом нужно запустить копии приложения на нескольких хостах с одинаковым окружением.

Далее необходимо настроить балансировку нагрузки/запросов между этими хостами. Сделать это можно как на уровне TCP (haproxy), так и на HTTP (nginx) или DNS .

Следующим шагом нужно сделать так, что бы файлы статики, cache и сессии web-приложения были доступны на каждом хосте. Для сессий можно использовать сервер, работающий по сети (например, memcached). В качестве сервера кеша вполне разумно использовать тот же memcached, но, естественно, на другом хосте.

Файлы статики можно смонтировать с некого общего файлового хранилища по NFS /CIFS или использовать распределённую ФС (HDFS , GlusterFS , Ceph).

Так же можно хранить файлы в БД (например, Mongo GridFS), решая тем самым проблемы доступности и масштабируемости (с учётом того, что для NoSQL БД проблема масштабируемости решена за счёт шардинга).

Отдельно стоит отметить проблему деплоймента на несколько хостов. Как сделать так, что бы пользователь, нажимая «Обновить», не видел разные версии приложения? Самым простым решением, на мой взгляд, будет исключение из конфига балансировщика нагрузки (web-сервера) не обновлённых хостов, и последовательного их включения по мере обновления. Так же можно привязать пользователей к конкретным хостам по cookie или IP. Если же обновление требует значимых изменений в БД, проще всего, вообще временно закрыть проект.

Масштабирование ФС

При необходимости хранения большого объёма статики можно выделить две проблемы: нехватка места и скорость доступа к данным. Как уже было написано выше, проблему с нехваткой места можно решить как минимум тремя путями: распределённая ФС, хранение данных в БД с поддержкой шардинга и организация шардинга «вручную» на уровне кода.

При этом стоит понимать, что раздача статики тоже не самая простая задача, когда речь идёт о высоких нагрузках. Поэтому в вполне резонно иметь множество серверов предназначенных для раздачи статики. При этом, если мы имеем общее хранилище данных (распределённая ФС или БД), при сохранении файла мы можем сохранять его имя без учёта хоста, а имя хоста подставлять случайным образом при формировании страницы (случайным образом балансирую нагрузку между web-серверами, раздающими статику). В случае, когда шардинг реализуется вручную (то есть, за выбор хоста, на который будут залиты данные, отвечает логика в коде), информация о хосте заливки должна либо вычисляться на основе самого файла, либо генерироваться на основании третьих данных (информация о пользователе, количестве места на дисках-хранилищах) и сохраняться вместе с именем файла в БД.

Мониторинг

Понятно, что большая и сложная система требует постоянного мониторинга. Решение, на мой взгляд, тут стандартное – zabbix, который следит за нагрузкой/работой узлов системы и monit для демонов для подстраховки.

Заключение

Выше кратко рассмотрено множество вариантов решений проблем масштабирования web-приложения. Каждый из них обладает своими достоинствами и недостатками. Не существует некоторого рецепта, как сделать всё хорошо и сразу – для каждой задачи найдётся множество решений со своими плюсами и минусами. Какой из них выбрать – решать вам.

Олег Спиряев

В последнее время нередки утверждения, что серверы среднего и старшего класса активно заменяются на группы серверов начального уровня, объединенные в стойки или кластеры. Однако некоторые эксперты с этим не согласны. Так, по данным Dataquest, доля моделей ценой от 500 тыс. долл. и выше (к ним относятся средние и старшие серверы SMP) в общем объеме продаж серверов с 2000 до 2002 г. выросла с 38 до 52%.

Другие данные, полученные компанией IDC, свидетельствуют о росте (по крайней мере, по числу машин) в секторе младших моделей серверов - с двумя процессорами. IDC также предсказывает, что в 2005 г. самой распространенной операционной системой для серверов стоимостью от 50 тыс. до 3 млн долл. будет Unix. Из сравнения этих данных видно, что Unix-серверы среднего и старшего класса останутся преобладающей платформой для центров обработки данных, но будут дополняться все растущим числом небольших (обычно двухпроцессорных) серверов.

Эта тенденция сложилась в результате выделения в центрах обработки данных разных уровней вычислений (рис. 1). Уровень 1, или фронтальный уровень, постепенно переходит на модель горизонтального масштабирования небольших серверов, а на уровне 3 (уровне баз данных) преобладают серверы с вертикальным масштабированием. Уровень 2 (уровень приложений) становится областью, где сосуществуют вертикальная и горизонтальная архитектуры.

Вертикальная и горизонтальная архитектуры

Рассмотрим основные различия между вертикальной и горизонтальной архитектурами. Серверы с вертикальным масштабированием - это большие SMP-системы (с симметричной многопроцессорной обработкой или совместно используемой памятью), насчитывающие свыше четырех центральных процессоров. В них используется только одна копия ОС, управляющая работой всех процессоров, памяти и компонентов ввода-вывода. Обычно все эти ресурсы размещены в одной стойке или шкафу. Межсоединения у таких серверов осуществляются по высокоскоростной центральной или объединительной панели с небольшим временем запаздывания и согласованным доступом к кэш-памяти. Добавить ресурсы можно путем установки внутрь шкафа дополнительных системных плат. В системах с вертикальной архитектурой (или SMP-системах) память используется совместно, т. е. все процессоры и компоненты ввода-вывода получают доступ ко всей памяти. Пользователь "видит" память как единый большой объект.

При альтернативном, горизонтальном масштабировании системы соединяются через сеть или объединяются в кластер. Для межсоединений обычно используются стандартные сетевые технологии, такие, как Fast Ethernet, Gigabit Ethernet (GBE) и Scalable Coherent Interconnect (SCI), дающие меньшую пропускную способность и большее запаздывание по сравнению с вертикальными системами. Ресурсы в этом случае распределяются между узлами, обычно содержащими от одного до четырех процессоров; каждый узел имеет собственный процессор и память и может иметь собственную подсистему ввода-вывода или использовать ее совместно с другими узлами. На каждом узле работает отдельная копия ОС. Ресурсы расширяются за счет добавления узлов, но не добавления ресурсов в узел. Память в горизонтальных системах распределена, т. е. у каждого узла есть собственная память, к которой напрямую обращаются его процессоры и подсистема ввода-вывода. Доступ к этим ресурсам с другого узла происходит намного медленнее, чем с узла, где они расположены. Кроме того, при горизонтальной архитектуре отсутствует согласованный доступ узлов к памяти, а используемые приложения потребляют относительно немного ресурсов, поэтому они "умещаются" на одном узле и им не нужен согласованный доступ. Если же приложению потребуется несколько узлов, то оно само должно обеспечить согласованный доступ к памяти.

Если горизонтальная система удовлетворяет требованиям приложений, то такая архитектура предпочтительна, поскольку расходы на ее приобретение меньше. Обычно стоимость приобретения в расчете на один процессор у горизонтальных систем ниже, чем у вертикальных. Разница в цене объясняется тем, что в вертикальных системах применяются более мощные функции надежности, доступности и обслуживаемости - RAS (reliability, availability, serviceability), а также высокопроизводительные межсоединения. Однако есть ряд ограничений на применение систем с горизонтальной архитектурой. Ниже мы обсудим, в каких условиях возможно применение горизонтальных систем и когда обязательно вертикальное масштабирование.

Помимо одного большого SMP-сервера, к вертикальной архитектуре относятся также кластеры больших SMP-серверов, используемые для одного крупномасштабного приложения.

Недавно появившиеся на рынке модульные, или blade-серверы, обычно оборудуемые одним-двумя процессорами, - пример горизонтальных серверов. Здесь кластер состоит из небольших узлов, в каждом из которых установлен SMP-сервер начального уровня с числом центральных процессоров от 1 до 4.

Другой способ горизонтального масштабирования - это большие вычислительные системы с массовым параллелизмом (MPP), состоящие из множества установленных в одном шкафу небольших процессоров, каждый из которых имеет собственную копию ОС или копию микроядра ОС. В настоящее время выпускаются всего несколько систем MPP, которые чаще всего представляют специализированные решения. Это, например, системы Terradata производства компании NCR, IBM RS/6000SP (SP-2) и HP Tandem non-stop.

Таблица 1. Особенности вертикальной и горизонтальной архитектур

Параметр Вертикальные системы Горизонтальные системы
Память Большая совместно используемая Небольшая выделенная
Потоки Много взаимозависимых потоков Много независимых потоков
Межсоединения Сильносвязанные внутренние Слабосвязанные внешние
RAS Мощные RAS одиночной системы Мощные RAS с использованием репликации
Центральные процессоры Много стандартных Много стандартных
ОС Одна копия ОС на множество центральных процессоров Несколько копий ОС (по одной копии на 1-4 процессора)
Компоновка В одном шкафу Размещение большого числа серверов в стойке
Плотность размещения Высокая плотность размещения процессоров на единицу площади пола
Оборудование Стандартное и специально разработанное Стандартное
Масштабирование В пределах корпуса одного сервера В масштабе нескольких серверов
Расширение Путем установки в сервер дополнительных компонентов Путем добавления новых узлов
Архитектура 64-разрядная 32- и 64-разрядная

Табл. 1 позволяет провести сравнительный анализ вертикальной и горизонтальной архитектур.

  • В вертикальных системах память используется совместно и обеспечивается согласованный доступ к кэш-памяти.
  • Вертикальные системы идеальны для потоков выполнения задач, которые должны обмениваться данными между собой.
  • Вертикальные системы характеризуются мощными функциями RAS, а в горизонтальных системах доступность реализуется с помощью массивной репликации (в кластер соединяются несколько узлов, поэтому отказ одного из них мало влияет на работу всей системы).
  • В вертикальных системах одна копия ОС охватывает все ресурсы. Некоторые вертикальные системы, например, мидфреймы и серверы класса high-end Sun Microsystems (от Sun Fire 4800 до Sun Fire 15K), можно разделить на меньшие вертикальные серверы.
  • В вертикальных системах используется максимально возможное число стандартных компонентов, но некоторые основные составляющие (например, межсоединения) специально разрабатываются.
  • Вертикальные системы можно расширять, устанавливая в существующий каркас дополнительные компоненты (более мощные процессоры, добавочную память, дополнительные и более производительные соединения ввода-вывода и т. п.). Горизонтальные системы расширяются за счет добавления узла или замены старых узлов на новые.
  • Практически все вертикальные системы 64-разрядные, а горизонтальные могут быть как 32-разрядными, так и 64-разрядными.

Для одних типов приложений лучше подходят вертикальные системы, для других - горизонтальные, однако во многих случаях оптимальный выбор архитектуры зависит от размера задачи. В табл. 2 приведены примеры приложений, для которых оптимальна вертикальная либо горизонтальная архитектура.

Таблица 2. Типы приложений для вертикальной и горизонтальной архитектур

Для небольших и модульных серверов хорошо подходят приложения, которые не используют информацию о состоянии, невелики по масштабу и легко реплицируются. А для приложений, использующих информацию о состоянии и большие объемы данных, требующих интенсивной передачи данных внутри системы, идеальным решением будут вертикальные серверы. На рынке высокопроизводительных технических вычислений (HPTC) имеется множество приложений, в которых потоки зависят друг от друга и обмениваются данными между собой. Существуют также приложения, которым нужны большие объемы совместно используемой памяти. Для этих двух типов приложений лучше всего подходят большие SMP-серверы. Однако имеются и такие приложения HPTC, в которых потоки исполнения независимы и им не требуется совместно используемая память большого объема. Такие приложения можно разбивать на разделы, и потому для их выполнения идеальны кластеры небольших серверов. Аналогичным образом некоторые коммерческие приложения поддерживают разделы, и для них оптимальны горизонтальные серверы, а другие нельзя разбить на разделы, поэтому для них лучшая платформа - это вертикальные серверы.

Факторы, влияющие на производительность

Все крупные центры обработки данных представляют собой параллельные компьютеры. Здесь даже кластеры можно рассматривать как особый тип параллельных систем. Для получения высокой производительности требуется сбалансированная система с мощными процессорами, работающими на высокой скорости межсоединениями и подсистемой ввода-вывода, масштабируемой ОС, оптимизированными приложениями и совершенными функциями RAS.

Процессоры и системные межсоединения

Процессоры, безусловно, существенный компонент, но они только отчасти определяют общую производительность системы. Более важно обеспечить работу процессоров с максимальной загрузкой. У мощного процессора, загруженного лишь на 50%, производительность будет хуже, чем у более медленного процессора, который загружен на 80%.

Кроме того, по мере роста числа процессоров в параллельной системе на первый план выходит не их мощность, а системные межсоединения. Именно они отвечают за перемещение данных с диска, из памяти и из сети к процессору. В кластере в качестве межсоединения выступает сетевое соединение, например, Fast Ethernet или Gigabit Ethernet. Кластерные межсоединения перемещают данные между узлами, а системные - внутри отдельной системы. Если межсоединение работает слишком медленно, то процессор в ожидании данных будет простаивать.

Системные межсоединения также используются для перемещения адресов данных, что необходимо для поддержки согласованного обращения к кэш-памяти. Если системное межсоединение слишком медленно передает адреса данных, то процессор опять-таки будет простаивать в ожидании данных, поскольку для доступа к ним ему нужно знать их адрес. Быстрые межсоединения обеспечивают высокую пропускную способность и низкое запаздывание (малое время, проходящее от момента запроса на данные до начала передачи данных).

Основное техническое различие между горизонтальными и вертикальными системами - это пропускная способность и запаздывание их межсоединений. У межсоединений кластеров пропускная способность может составлять от 125 Мбайт/с для Fast Ethernet до 200 Мбайт/с для SCI, а запаздывание - от 100 тыс. нс для GBE и до 10 тыс. нс для SCI. С помощью интерфейса InfiniBand возможно реализовать более быстрые межсоединения с пиковой скоростью от примерно 250 Мбайт/с для первой версии и до 3 Гбайт/с для последующих.

Ввод и вывод

Быстрый ввод-вывод необходим для того, чтобы межсоединение могло быстро получить данные с диска и из сети и передать их процессорам. Узкое место в подсистеме ввода-вывода может отрицательно сказаться на работе даже самых быстрых межсоединений и процессоров.

Операционная система

Даже лучшее оборудование оказывается неэффективным, если ОС недостаточно масштабируема. Для горизонтальных систем масштабируемость ОС не столь важна, потому что в отдельном узле или с отдельной копией ОС работает не более четырех процессоров.

Доступность системы

Вообще говоря, доступность системы во многом зависит от типа архитектуры. В больших SMP-системах функции RAS встроены в систему и дополнены переключением при отказах для двух-четырех узлов. В горизонтальных системах RAS отдельных узлов хуже, но улучшение этих функций достигается многократной репликацией узлов.

Оптимизированные приложения

Приложения необходимо оптимизировать для архитектуры вычислительной системы. Легче всего писать и оптимизировать приложения для SMP-систем. Основные коммерческие приложения оптимизированы именно для SMP-систем и даже разрабатывались на них, поэтому SMP доминируют на рынке систем среднего класса и high-end последние десять лет.

Размер приложений

Как уже отмечалось, в больших SMP-системах используются высокоскоростные межсоединения, обеспечивающие достаточную производительность системы. В горизонтальных системах могут возникать проблемы с производительностью из-за низкой пропускной способности и значительной задержки межсоединений в тех случаях, когда требуется часто передавать данные между узлами. Однако некоторым приложениям для достижения высокой производительности не нужна высокая скорость межсоединений - обычно это небольшие приложения и приложения, которые можно легко реплицировать (например, Web-серверы, прокси-серверы, брандмауэры и небольшие серверы приложений). В таких горизонтальных системах каждый узел выполняет небольшую задачу независимо от работы всех остальных.

Например, в случае горизонтальной архитектуры (или архитектуры с распределенной памятью) четыре процессорных узла (каждый с отдельным ОЗУ и выделенной либо используемой совместно подсистемой ввода-вывода) могут использовать сетевое межсоединение, например, Gigabit Ethernet. В этой вычислительной среде выполняются рабочие нагрузки трех типов. Самая маленькая нагрузка помещается на одном узле, но по мере ее увеличения для выполнения требуется уже несколько узлов. Как утверждают специалисты, при выполнении одной задачи на нескольких узлах производительность значительно ухудшается из-за медленных межузловых межсоединений. Небольшие нагрузки, которым не нужно обмениваться данными между собой, прекрасно сочетаются с горизонтальной архитектурой, но при выполнении в ней крупномасштабных нагрузок возникают проблемы.

Конфигурация большой системы SMP может включать, например, до 100 процессоров, 576 Гбайт совместно используемой памяти и высокоскоростные межсоединения. Такая система может обрабатывать все типы нагрузок, поскольку в ней отсутствует обмен данными между узлами и эффективно осуществляется обмен данными между процессами. Все центральные процессоры могут одновременно получить доступ ко всем дискам, всей памяти и сетевым соединениям - это ключевая особенность SMP-систем (или вертикальных систем).

Часто возникает вопрос о целесообразности размещения на больших SMP малых нагрузок. Хотя в техническом плане это возможно, с экономической точки зрения такой подход себя не оправдывает. Для больших SMP стоимость приобретения в расчете на один процессор выше, чем для маленьких систем. Поэтому если приложение может работать на небольшом узле (или нескольких небольших узлах) и это не создает серьезных проблем с управлением, для его развертывания лучше подходит горизонтальное масштабирование. Но если приложение слишком велико и не может выполняться на небольшом узле (или нескольких таких узлах), то крупный SMP-сервер будет оптимальным вариантом с точки зрения как производительности, так и системного администрирования.

Производительность на уровне базы данных

Основной вопрос здесь - сравнение производительности одиночных средних и больших SMP-серверов с кластером небольших серверов (не более четырех процессоров).

При обсуждении масштабируемости фирмы-производители используют ряд специальных терминов. Так, рост производительности (Speedup) для SMP определяется как отношение скоростей выполнения приложения на нескольких процессорах и на одном. Линейный рост производительности (Linear speedup) означает, например, что на 40 процессорах приложение работает в 40 раз (40x) быстрее, чем на одном. Рост производительности не зависит от числа процессоров, т. е. для конфигурации из 24 процессоров он будет таким же, как для 48 процессоров. Рост производительности кластера (Cluster speedup) отличается только тем, что при его расчете берется число узлов, а не процессоров. Как и рост производительности SMP, рост производительности кластера остается постоянным для разного числа узлов.

Эффективность масштабирования (Scaling efficiency) характеризует способность приложений, особенно кластерных, масштабироваться на большое число узлов. Обычно считается, что эффективность масштабирования зависит от числа узлов, участвующих в измерении. Эффективность масштабирования SMP (SMP scaling efficiency) - это рост производительности, деленный на число процессоров, а эффективность кластера (Cluster efficiency) - это рост производительности кластера, деленный на число узлов в нем. Нужно понимать, в чем смысл этих параметров, чтобы не складывалась неправильная картина, поскольку эффективность масштабирования 90% на двух узлах - это не то же самое, что эффективность масштабирования 90% на четырех узлах.

На рис. 2 приведены три графика: идеальная линейная масштабируемость, масштабируемость 24-процессорного SMP-сервера в 95% и масштабируемость кластера из двух 4-процессорных серверов в 90%. Видно, что существуют определенные ограничения на масштабируемость баз данных в кластерах (при горизонтальном масштабировании). Соединяя вместе много маленьких серверов, не удается получить масштабируемость, необходимую для средних и крупных приложений. Причина этого - ограничения пропускной способности внутрикластерных межсоединений, дополнительная нагрузка на ПО баз данных, связанная с управлением кластером, и трудности написания приложений для кластерных сред с распределенной памятью.

Опубликованные результаты эталонных тестов показывают, например, что у Oracle9i RAC (Real Application Cluster) рост производительности составляет 1,8 и эффективность масштабирования равна 90%. Такая эффективность масштабируемости может показаться достаточно высокой, но на самом деле масштабируемость 90% для четырех узлов оказывается неэффективной, если сравнить ее с результатами больших SMP-серверов.

Производительность на уровне приложений

Уровень приложений в трехуровневом центре обработки данных сильно отличается от уровня базы данных. Обычно приложения этого уровня работают без запоминания состояния - иными словами, на самом сервере данные не хранятся или хранится только их небольшая часть. Этот уровень содержит бизнес-правила для сервисов приложений. Транзакции приходят на уровень приложений и им же обрабатываются. Когда данные нужно записать или считать, транзакции передаются на уровень базы данных. Серверы приложений стремятся консолидировать соединения с базой данных, поскольку большое число соединений отрицательно влияет на производительность.

В большинстве случаев уровню сервера приложений требуется намного больше процессоров, чем уровню базы данных в расчете на отдельный прикладной сервис. Например, в случае SAP R/3 это соотношение составляет примерно 10 процессоров на каждый процессор базы данных, т. е. если SAP R/3 требуется 20 процессоров для уровня базы данных, то на уровне приложений должно быть примерно 200 процессоров. Вопрос заключается в том, что выгоднее развернуть - 100 двухпроцессорных серверов или десять 20-процессорных. Аналогичным образом в Oracle соотношение процессоров приложений к процессорам баз данных равно примерно 5 к 1.

Считается, что серверы приложений не требуется распределять по нескольким узлам. Несколько копий прикладного ПО можно распределить по разным физическим серверам разной мощности или по динамическим доменам больших серверов.

Число процессоров, требуемых для уровня приложений, будет примерно одинаково независимо от архитектуры компьютеров. Затраты на приобретение оборудования и ПО для горизонтальной архитектуры будут меньше, поскольку стоимость в расчете на один процессор в этом случае меньше. В большинстве случаев горизонтальные системы способны обеспечить производительность, необходимую для выполнения соглашения об уровне сервиса. Затраты, связанные с приобретением лицензий на ПО, для обеих архитектур примерно одинаковы.

В то же время расходы на управление и обслуживание инфраструктуры у горизонтальной архитектуры могут оказаться более высокими. При развертывании на горизонтальных системах используются многочисленные копии ОС и ПО серверов приложений. Затраты же на поддержание инфраструктуры обычно растут пропорционально числу копий ОС и приложений. Кроме того, для горизонтальной архитектуры резервное копирование и восстановление после аварий становится децентрализованным, и управлять сетевой инфраструктурой сложнее.

Стоимость системного администрирования с трудом поддается измерениям. Обычно модели для сравнения горизонтального и вертикального развертывания прикладных серверов показывают, что управление меньшим числом более мощных серверов (вертикальных серверов) обходится дешевле, чем управление множеством небольших серверов. В целом при выборе типа архитектуры для развертывания уровня приложений ИТ-менеджеры должны детально проанализировать стоимость приобретения оборудования.

Влияние архитектуры на доступность

Доступность крайне важна для современных центров обработки данных - сервисы приложений должны быть доступны в режиме 24x7x365 (24 часа в сутки, 7 дней в неделю, 365 дней в году). В зависимости от потребностей конкретного центра обработки данных используются разные схемы обеспечения высокой доступности. Для выбора конкретного решения необходимо определить допустимое время простоев (запланированных и незапланированных). На рис. 3 показано, как процент доступности отражается на продолжительности простоев.

По мере роста требований к доступности растет и стоимость решения. Менеджеры центров обработки данных должны определить, какое сочетание стоимости, сложности и доступности наилучшим образом соответствует требованиям к уровню сервиса. Центры обработки данных, которым нужна доступность примерно 99,95%, могут развернуть одиночный SMP-сервер с такими функциями RAS, как полное резервирование аппаратуры и обслуживание в онлайновом режиме.

Однако для достижения доступности выше 99,95% потребуется кластер. ПО Sun Cluster с переключением при отказе HA (High Availability - высокой доступности) обеспечивает доступность 99,975%. Переключение при отказе HA использует основной сервер и находящийся в горячем резерве; при отказе основного сервера резервный берет на себя его нагрузку. Время перезапуска сервиса зависит от приложений и может занять несколько минут, особенно в случае приложений баз данных, которым для восстановления транзакций требуется откат с обработкой большого объема данных.

Если простои в несколько минут недопустимы для центра обработки данных, то решением может стать система типа "активный-активный", где приложение развертывается на двух или нескольких узлах: если один из них выйдет из строя, то остальные продолжат выполнение приложения. В результате перебой будет очень коротким (некоторые клиенты сообщают, что он продолжается менее 1 мин), иногда пользователь может даже не заметить отказа узла.

Вертикальные серверы обеспечивают высокую доступность за счет встраивания многих функций RAS в отдельный сервер для сокращения до минимума запланированных и незапланированных простоев. В горизонтальных серверах функции, обеспечивающие высокий уровень RAS, реализуются не на уровне отдельного сервера, а за счет дублирования и размещения нескольких серверов. Из-за разной реализации функций RAS и межсоединений горизонтальные серверы обычно дешевле в расчете на один процессор.

Для трехуровневой архитектуры хорошим примером горизонтальной высокой доступности служит развертывание Web-серверов. Можно развернуть много небольших серверов, на каждом из которых будет установлена отдельная копия ПО Web-сервера. Если один Web-сервер выйдет из строя, его транзакции перераспределяются между остальными работоспособными серверами. В случае серверов приложений они могут размещаться как на горизонтальных, так и на вертикальных серверах, и высокая доступность реализуется с помощью дублирования. Независимо от того, развертывается ли несколько крупных SMP-серверов или много небольших, дублирование остается основным способом обеспечения высокого RAS на уровне приложений.

Однако для уровня баз данных ситуация меняется. Базы данных сохраняют состояние и по своей природе требуют в большинстве случаев разделения данных и возможности доступа к ним со всех процессоров/узлов. Это означает, что для высокой доступности с помощью дублирования нужно использовать такое ПО кластеризации, как Sun Cluster или Oracle9i RAC (для очень высокой доступности).

Выводы

Как у вертикальной, так и у горизонтальной архитектуры есть своя ниша в сегодняшнем центре обработки данных. Хотя сегодня основное внимание сосредоточено на таких новых технологиях, как модульные серверы и параллельные базы данных, на рынке сохраняется высокий спрос на серверы среднего класса и класса high-end.

Вертикальные и горизонтальные системы могут использовать одно и то же ПО, ОС и даже одинаковые процессоры. Основное различие, которое сказывается на цене и производительности, это межсоединения, используемые в той и в другой архитектуре. Горизонтальные серверы используют слабосвязанные внешние межсоединения, а вертикальные серверы - сильносвязанные межсоединения, обеспечивающие более высокую скорость передачи данных.

Для фронтального уровня горизонтальные серверы обычно предоставляют оптимальное решение с точки зрения производительности, совокупной стоимости приобретения и доступности. Для уровня приложений можно эффективно использовать как вертикальную, так и горизонтальную архитектуру. Для уровня баз данных оптимальным решением будет использование вертикальных серверов, независимо от требуемого уровня доступности.

) Здравствуйте! Я Александр Макаров, и вы можете меня знать по фреймворку «Yii» — я один из его разработчиков. У меня также есть full-time работа — и это уже не стартап — Stay.com, который занимается путешествиями.

Сегодня я буду рассказывать про горизонтальное масштабирование, но в очень-очень общих словах.

Что такое масштабирование, вообще? Это возможность увеличить производительность проекта за минимальное время путем добавления ресурсов.

Обычно масштабирование подразумевает не переписывание кода, а либо добавление серверов, либо наращивание ресурсов существующего. По этому типу выделяют вертикальное и горизонтальное масштабирование.

Вертикальное — это когда добавляют больше оперативки, дисков и т.д. на уже существующий сервер, а горизонтальное — это когда ставят больше серверов в дата-центры, и сервера там уже как-то взаимодействуют.

Самый классный вопрос, который задают, — а зачем оно надо, если у меня все и на одном сервере прекрасно работает? На самом-то деле, надо проверить, что будет. Т.е., сейчас оно работает, но что будет потом? Есть две замечательные утилиты — ab и siege, которые как бы нагоняют тучу пользователей конкурента, которые начинают долбить сервер, пытаются запросить странички, послать какие-то запросы. Вы должны указать, что им делать, а утилиты формируют такие вот отчеты:

Главные два параметра: n — количество запросов, которые надо сделать, с — количество одновременных запросов. Таким образом они проверяют конкурентность.

На выходе получаем RPS, т.е. количество запросов в секунду, которое способен обработать сервер, из чего станет понятно, сколько пользователей он может выдержать. Все, конечно, зависит от проекта, бывает по-разному, но обычно это требует внимания.

Есть еще один параметр — Response time — время ответа, за которое в среднем сервер отдал страничку. Оно бывает разное, но известно, что около 300 мс — это норма, а что выше — уже не очень хорошо, потому что эти 300 мс отрабатывает сервер, к этому прибавляются еще 300-600 мс, которые отрабатывает клиент, т.е. пока все загрузится — стили, картинки и остальное — тоже проходит время.

Бывает, что на самом деле пока и не надо заботиться о масштабировании — идем на сервер, обновляем PHP, получаем 40% прироста производительности и все круто. Далее настраиваем Opcache, тюним его. Opcache, кстати, тюнится так же, как и APC, скриптом, который можно найти в репозитории у Расмуса Лердорфа и который показывает хиты и мисы, где хиты — это сколько раз PHP пошел в кэш, а мисы — сколько раз он пошел в файловую систему доставать файлики. Если прогнать весь сайт, либо запустить туда какой-то краулер по ссылкам, либо вручную потыкать, то у нас будет статистика по этим хитам и мисам. Если хитов 100%, а мисов — 0%, значит, все нормально, а если есть мисы, то надо выделить больше памяти, чтобы весь наш код влез в Opcache. Это частая ошибка, которую допускают — вроде Opcache есть, но что-то не работает…

Еще часто начинают масштабировать, но не смотрят, вообще, из-за чего все работает медленно. Чаще всего лезем в базу, смотрим — индексов нет, ставим индексы — все сразу залетало, еще на 2 года хватит, красота!

Ну, еще надо включить кэш, заменить apache на nginx и php-fpm, чтобы сэкономить память. Будет все классно.

Все перечисленное достаточно просто и дает вам время. Время на то, что когда-то этого станет мало, и к этому уже сейчас надо готовиться.

Как, вообще, понять, в чем проблема? Либо у вас уже настал highload, а это не обязательно какое-то бешеное число запросов и т.д., это, когда у вас проект не справляется с нагрузкой, и тривиальными способами это уже не решается. Надо расти либо вширь, либо вверх. Надо что-то делать и, скорее всего, на это мало времени, что-то надо придумывать.

Первое правило — никогда ничего нельзя делать вслепую, т.е. нам нужен отличный мониторинг. Сначала мы выигрываем время на какой-то очевидной оптимизации типа включения кэша или кэширования Главной и т.п. Потом настраиваем мониторинг, он нам показывает, чего не хватает. И все это повторяется многократно – останавливать мониторинг и доработку никогда нельзя.

Что может показать мониторинг? Мы можем упереться в диск, т.е. в файловую систему, в память, в процессор, в сеть… И может быть такое, что, вроде бы, все более-менее, но какие-то ошибки валятся. Все это разрешается по-разному. Можно проблему, допустим, с диском решить добавлением нового диска в тот же сервер, а можно поставить второй сервер, который будет заниматься только файлами.

На что нужно обращать внимание прямо сейчас при мониторинге? Это:

  1. доступность, т.е. жив сервер, вообще, или нет;
  2. нехватка ресурсов диска, процессора и т.д.;
  3. ошибки.
Как это все мониторить?

Вот список замечательных инструментов, которые позволяют мониторить ресурсы и показывать результаты в очень удобном виде:

Этот доклад - расшифровка одного из лучших выступлений на обучающей конференции разработчиков высоконагруженных систем за 2015 год.

Старьё! - скажите вы.
- Вечные ценности! - ответим мы. Добавить метки

Под масштабируемостью корпоративных систем подразумевается возможность наращивания их мощности путем подключения новых технических и программных средств без дополнительной доработки последних. Этот момент важен при использовании современных компьютерных и сетевых технологий. Можно привести пример распределенной обработки данных в центральном банке и его филиалах.

Масштабируемость достигается на различных уровнях: а) Техническом; б) Системном; в) Сетевом; г) СУБД; д) Прикладном. Для ОС масштабируемость означает, что ОС не привязана к однопроцессорной архитектуре процессора. В случае усложнения стоящих перед пользователем задач и расширения предъявляемых к компьютерной сети требований, ОС должна обеспечивать возможность добавления более мощных и производительных серверов и рабочих станций в корпоративной сети. Можно рассматривать масштабируемость технических средств, программных средств, масштабируемость системы в целом. В основе масштабируемости лежат такие технологии как: а) Международные стандарты; б) Сетевые и телекоммуникационные технологии; в) Операционные системы; г) Технология клиент/сервер и ряд других средств.

Конец работы -

Эта тема принадлежит разделу:

Компьютерные информационные технологии в управлении. Классификация систем управления

Цель КИС подготовка к использованию современных информационных технологий в рамках КИС как инструмента для решения научных и практических задач в.. Понятие информационной технологии Корпоративные информационные..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие информационной технологии. Корпоративные информационные технологии
Технология – сис-ма взаимосвязанных способов обработки материалов и приемов изготовления продукции в производственном процессе. Информационные технологии – система взаимосвязанных мет

Технология обработки информации. Понятие совместимости, открытости и модульности
Информация – совокупность фактов, явлений, событий, представляющих интерес, подлежащих регистрации и обработке. Это подразумевает наличие двух моментов: источник и приемник (потребитель) информации

Виды обеспечения информационных систем
Виды обеспечения АСОЭИ: а) Технические; б)Математические; в)Лингвистические; г)Программные. Информационное обеспечение – система классификации и кодирования информации, технологическая схема обрабо

Архитектура корпоративной информационной системы
Архитектура КИС состоит из нескольких уровней: а)Информационно-логический уровень–представляет собой совокупность потоков данных и центров (узлов) возникновения, потребления

Требования к корпоративным информационным системам
Процессы активного совершенствования технологий обработки информации являются следствием того, что к современным информационным системам (КИС) все чаще предъявляются следующие требования: а) структ

Неоднородность корпоративных информационных систем. Решения проблем неоднородности в корпоративных информационных системах
Важнейшую роль играют вопросы преодоления проблем неоднородности корпоративных систем и обеспечения совместимости компонент, входящих в ее состав. Неоднородность в вычислительных системах может про

Международные стандарты в области компьютерных информационных технологий
В настоящее время всемирное распространение получил комплекс стандартов на систему качества предприятия, разработанный ISO (International Standards Organization), точнее, техническим комитетом ISO/

Информационные модели объекта управления
Современное предприятие можно рассматривать как эффективный информационный центр, источниками информации которого являются внешняя и внутренняя деловая среда. Внешняя деловая среда –

Информационное обеспечение корпоративных информационных систем
Информационное обеспечение – система классификации и кодирования информации, технологическая схема обработки данных, нормативно-справочная информация, система документооборота и т.д. Информационное

Политика формирования информационных ресурсов как единого информационного пространства
Для обеспечения взаимодействия информационных ресурсов различного уровня необходимы: а) Использование современных информационных технологий; б) Современная транспортная информационная среда; в) Еди

Преимущества использования вычислительных систем
В результате использования многомашинных и многопроцессорных ВС оказывается возможным достичь следующих преимуществ:1) Повышение уровня производительности и получения быстродействи

Средства коммуникационной техники и средств связи
Средства коммуникационной техники обеспечивают одну из основных функций управленческой деятельности - передачу информации в рамках системы управления и обмен данными с внешней средой, предполагают

Операционные системы (ОС). Технологии ОС
Среди системных программ особое место занимает операционная система (ОС). Под операционной системой (ОС) (Operating System)понимают комплекс программ, осуществляющих управле

OS Unix и структурные решения в корпоративных информационных системах. Понятие мобильности
Начало разработок ОС Unix было положено фирмой Bell Laboratories в 1968 г. Была предложена многопользовательская 32-х разрядная ОС Unix для Main Frame. В 1976 г. компания AT&T (куда входила и B

Понятие компьютерных сетей и их характеристика
Компьютерная сеть – это комплекс территориально рассредоточенных ЭВМ, связанных между собой каналами передачи данных целях эффективного использования вычислительных ресурсов. Целесообразност

Состав компьютерных сетей
В состав компьютерных сетей входят технические, программные и информационные средства. То есть компьютерную сеть можно рассматривать как систему с распределенными по территории аппаратурными, прогр

Архитектура компьютерных сетей
В общем случае архитектуру компьютерных сетей можно рассматривать с двух точек зрения – это физическая организация компьютерной сети (топология сети) и организация сети на логическом уров

Компьютерные сети с выделенным сервером и их характеристика
Клиент-сервер - сетевая архитектура, в которой устройства являются либо клиентами, либо серверами. Клиентом является запрашивающая машина (обычно ПК), сервером- машина, которая отвеча

Структура глобальных компьютерных сетей
Глобальные сети (WAN, Wide Area Networks) это системы с широкополосными каналами и позволяют организовать взаимодействие между компьютерами на больших расстояниях. В идеале глобальная компьютерная

Масштабируемость компьютерных сетей
Масштабируемость – возможность наращивания ресурсов сети и абонентов. В компьютерных сетях с выделенным сервером, рабочие станции подключаются к выделенным серверам, а серверы, в свою очередь, груп

Протоколы Internet
Протокол в данном случае - это, образно говоря, «язык», используемый компьютерами для обмена данными при работе в сети. Чтобы различные компьютеры сети могли взаимодействовать, они должны «разговар

Адресация Internet
Интернет- всемирная система объединённых компьютерных сетей, построенная на использовании протокола IP и маршрутизации пакетов данных. Интернет образует глобальное информационное пространство, служ

Масштабируемость - способность устройства увеличивать свои
возможности
путем наращивания числа функциональных блоков,
выполняющих одни и
те же задачи.
Глоссарий.ru

Обычно о масштабировании начинают думать тогда, когда один
сервер не справляется с возложенной на него работой. С чем именно он не
справляется? Работа любого web-сервера по большому счету сводится к основному
занятию компьютеров - обработке данных. Ответ на HTTP (или любой другой) запрос
подразумевает проведение некоторых операций над некими данными. Соответственно,
у нас есть две основные сущности - это данные (характеризуемые своим объемом) и
вычисления (характеризуемые сложностью). Сервер может не справляться со своей
работой по причине большого объема данных (они могут физически не помещаться на
сервере), либо по причине большой вычислительной нагрузки. Речь здесь идет,
конечно, о суммарной нагрузке - сложность обработки одного запроса может быть
невелика, но большое их количество может «завалить» сервер.

В основном мы будем говорить о масштабировании на примере
типичного растущего web-проекта, однако описанные здесь принципы подходят и для
других областей применения. Сначала мы рассмотрим архитектуру проекта и простое
распределение ее составных частей на несколько серверов, а затем поговорим о
масштабировании вычислений и данных.

Типичная архитектура сайта

Жизнь типичного сайта начинается с очень простой архитектуры
- это один web-сервер (обычно в его роли выступает Apache),
который занимается всей работой по обслуживанию HTTP-запросов,
поступающих от посетителей. Он отдает клиентам так называемую «статику», то
есть файлы, лежащие на диске сервера и не требующие обработки: картинки (gif,
jpg, png), листы стилей (css), клиентские скрипты (js, swf). Тот же сервер
отвечает на запросы, требующие вычислений - обычно это формирование
html-страниц, хотя иногда «на лету» создаются и изображения и другие документы.
Чаще всего ответы на такие запросы формируются скриптами, написанными на php,
perl или других языках.

Минус такой простой схемы работы в том, что разные по
характеру запросы (отдача файлов с диска и вычислительная работа скриптов)
обрабатываются одним и тем же web-сервером. Вычислительные запросы требуют
держать в памяти сервера много информации (интерпретатор скриптового языка,
сами скрипты, данные, с которыми они работают) и могут занимать много
вычислительных ресурсов. Выдача статики, наоборот, требует мало ресурсов
процессора, но может занимать продолжительное время, если у клиента низкая
скорость связи. Внутреннее устройство сервера Apache предполагает, что каждое
соединение обрабатывается отдельным процессом. Это удобно для работы скриптов,
однако неоптимально для обработки простых запросов. Получается, что тяжелые (от
скриптов и прочих данных) процессы Apache много времени проводят в ожидании (сначала при получении
запроса, затем при отправке ответа), впустую занимая память сервера.

Решение этой проблемы - распределение работы по обработке
запросов между двумя разными программами - т.е. разделение на frontend и
backend. Легкий frontend-сервер выполняет задачи по отдаче статики, а остальные
запросы перенаправляет (проксирует) на backend, где выполняется формирование
страниц. Ожидание медленных клиентов также берет на себя frontend, и если он использует
мультиплексирование (когда один процесс обслуживает нескольких клиентов - так
работают, например, nginx или lighttpd), то ожидание практически ничего не
стоит.

Из других компонент сайта следует отметить базу данных, в
которой обычно хранятся основные данные системы - тут наиболее популярны
бесплатные СУБД MySQL и PostgreSQL. Часто отдельно выделяется хранилище
бинарных файлов, где содержатся картинки (например, иллюстрации к статьям
сайта, аватары и фотографии пользователей) или другие файлы.

Таким образом, мы получили схему архитектуры, состоящую из
нескольких компонент.

Обычно в начале жизни сайта все компоненты архитектуры
располагаются на одном сервере. Если он перестает справляться с нагрузкой, то
есть простое решение - вынести наиболее легко отделяемые части на другой
сервер. Проще всего начать с базы данных - перенести ее на отдельный сервер и
изменить реквизиты доступа в скриптах. Кстати, в этот момент мы сталкиваемся с
важностью правильной архитектуры программного кода. Если работа с базой данных
вынесена в отдельный модуль, общий для всего сайта - то исправить параметры
соединения будет просто.

Пути дальнейшего разделения компонент тоже понятны - например, можно вынести frontend на отдельный сервер. Но обычно frontend
требует мало системных ресурсов и на этом этапе его вынос не даст существенного
прироста производительности. Чаще всего сайт упирается в производительность
скриптов - формирование ответа (html-страницы) занимает слишком долгое время.
Поэтому следующим шагом обычно является масштабирование backend-сервера.

Распределение вычислений

Типичная ситуация для растущего сайта - база данных уже
вынесена на отдельную машину, разделение на frontend и backend выполнено,
однако посещаемость продолжает увеличиваться и backend не успевает обрабатывать
запросы. Это значит, что нам необходимо распределить вычисления на несколько
серверов. Сделать это просто - достаточно купить второй сервер и поставить на
него программы и скрипты, необходимые для работы backend.
После этого надо сделать так, чтобы запросы пользователей распределялись
(балансировались) между полученными серверами. О разных способах балансировки
будет сказано ниже, пока же отметим, что обычно этим занимается frontend,
который настраивают так, чтобы он равномерно распределял запросы между
серверами.

Важно, чтобы все backend-серверы были способны правильно
отвечать на запросы. Обычно для этого необходимо, чтобы каждый из них работал с
одним и тем же актуальным набором данных. Если мы храним всю информацию в единой
базе данных, то СУБД сама обеспечит совместный доступ и согласованность данных.
Если же некоторые данные хранятся локально на сервере (например, php-сессии
клиента), то стоит подумать о переносе их в общее хранилище, либо о более
сложном алгоритме распределения запросов.

Распределить по нескольким серверам можно не только работу
скриптов, но и вычисления, производимые базой данных. Если СУБД выполняет много
сложных запросов, занимая процессорное время сервера, можно создать несколько
копий базы данных на разных серверах. При этом возникает вопрос синхронизации
данных при изменениях, и здесь применимы несколько подходов.

  • Синхронизация на уровне приложения . В этом случае наши
    скрипты самостоятельно записывают изменения на все копии базы данных (и сами несут
    ответственность за правильность данных). Это не лучший вариант, поскольку он
    требует осторожности при реализации и весьма неустойчив к ошибкам.
  • Репликация - то есть автоматическое тиражирование
    изменений, сделанных на одном сервере, на все остальные сервера. Обычно при
    использовании репликации изменения записываются всегда на один и тот же сервер - его называют master, а остальные копии - slave. В большинстве СУБД есть
    встроенные или внешние средства для организации репликации. Различают
    синхронную репликацию - в этом случае запрос на изменение данных будет ожидать,
    пока данные будут скопированы на все сервера, и лишь потом завершится успешно - и асинхронную - в этом случае изменения копируются на slave-сервера с
    задержкой, зато запрос на запись завершается быстрее.
  • Multi-master репликация. Этот подход аналогичен
    предыдущему, однако тут мы можем производить изменение данных, обращаясь не к
    одному определенному серверу, а к любой копии базы. При этом изменения
    синхронно или асинхронно попадут на другие копии. Иногда такую схему называют
    термином «кластер базы данных».

Возможны разные варианты распределения системы по серверам.
Например, у нас может быть один сервер базы данных и несколько backend (весьма
типичная схема), или наоборот - один backend и несколько БД. А если мы масштабируем
и backend-сервера, и базу данных, то можно объединить backend и копию базы на
одной машине. В любом случае, как только у нас появляется несколько экземпляров
какого-либо сервера, возникает вопрос, как правильно распределить между ними
нагрузку.

Методы балансировки

Пусть мы создали несколько серверов (любого назначения - http, база данных и т.п.), каждый из которых может обрабатывать запросы. Перед
нами встает задача - как распределить между ними работу, как узнать, на какой
сервер отправлять запрос? Возможны два основных способа распределения запросов.

  • Балансирующий узел . В этом случае клиент шлет запрос на один
    фиксированный, известный ему сервер, а тот уже перенаправляет запрос на один из
    рабочих серверов. Типичный пример - сайт с одним frontend и несколькими
    backend-серверами, на которые проксируются запросы. Однако «клиент» может
    находиться и внутри нашей системы - например, скрипт может слать запрос к
    прокси-серверу базы данных, который передаст запрос одному из серверов СУБД.
    Сам балансирующий узел может работать как на отдельном сервере, так и на одном
    из рабочих серверов.

    Преимущества этого подхода в том,
    что клиенту ничего не надо знать о внутреннем устройстве системы - о количестве
    серверов, об их адресах и особенностях - всю эту информацию знает только
    балансировщик. Однако недостаток в том, что балансирующий узел является единой
    точкой отказа системы - если он выйдет из строя, вся система окажется
    неработоспособна. Кроме того, при большой нагрузке балансировщик может просто перестать
    справляться со своей работой, поэтому такой подход применим не всегда.

  • Балансировка на стороне клиента . Если мы хотим избежать
    единой точки отказа, существует альтернативный вариант - поручить выбор сервера
    самому клиенту. В этом случае клиент должен знать о внутреннем устройстве нашей
    системы, чтобы уметь правильно выбирать, к какому серверу обращаться.
    Несомненным плюсом является отсутствие точки отказа - при отказе одного из
    серверов клиент сможет обратиться к другим. Однако платой за это является
    усложнение логики клиента и меньшая гибкость балансировки.


Разумеется, существуют и комбинации этих подходов. Например,
такой известный способ распределения нагрузки, как DNS-балансировка, основан на
том, что при определении IP-адреса сайта клиенту выдается
адрес одного из нескольких одинаковых серверов. Таким образом, DNS выступает в
роли балансирующего узла, от которого клиент получает «распределение». Однако
сама структура DNS-серверов предполагает отсутствие точки отказа за счет
дублирования - то есть сочетаются достоинства двух подходов. Конечно, у такого
способа балансировки есть и минусы - например, такую систему сложно динамически
перестраивать.

Работа с сайтом обычно не ограничивается одним запросом.
Поэтому при проектировании важно понять, могут ли последовательные запросы
клиента быть корректно обработаны разными серверами, или клиент должен быть
привязан к одному серверу на время работы с сайтом. Это особенно важно, если на
сайте сохраняется временная информация о сессии работы пользователя (в этом
случае тоже возможно свободное распределение - однако тогда необходимо хранить
сессии в общем для всех серверов хранилище). «Привязать» посетителя к
конкретному серверу можно по его IP-адресу (который, однако, может меняться),
или по cookie (в которую заранее записан идентификатор сервера), или даже
просто перенаправив его на нужный домен.

С другой стороны, вычислительные сервера могут быть и не равноправными.
В некоторых случаях выгодно поступить наоборот, выделить отдельный сервер для
обработки запросов какого-то одного типа - и получить вертикальное разделение
функций. Тогда клиент или балансирующий узел будут выбирать сервер в
зависимости от типа поступившего запроса. Такой подход позволяет отделить
важные (или наоборот, не критичные, но тяжелые) запросы от остальных.

Распределение данных

Мы научились распределять вычисления, поэтому большая
посещаемость для нас не проблема. Однако объемы данных продолжают расти,
хранить и обрабатывать их становится все сложнее - а значит, пора строить
распределенное хранилище данных. В этом случае у нас уже не будет одного или
нескольких серверов, содержащих полную копию базы данных. Вместо этого, данные
будут распределены по разным серверам. Какие возможны схемы распределения?

  • Вертикальное распределение (vertical partitioning) - в простейшем случае
    представляет собой вынесение отдельных таблиц базы данных на другой сервер. При
    этом нам потребуется изменить скрипты, чтобы обращаться к разным серверам за
    разными данными. В пределе мы можем хранить каждую таблицу на отдельном сервере
    (хотя на практике это вряд ли будет выгодно). Очевидно, что при таком
    распределении мы теряем возможность делать SQL-запросы, объединяющие данные из
    двух таблиц, находящихся на разных серверах. При необходимости можно реализовать
    логику объединения в приложении, но это будет не столь эффективно, как в СУБД.
    Поэтому при разбиении базы данных нужно проанализировать связи между таблицами,
    чтобы разносить максимально независимые таблицы.

    Более сложный случай
    вертикального распределения базы - это декомпозиция одной таблицы, когда часть
    ее столбцов оказывается на одном сервере, а часть - на другом. Такой прием
    встречается реже, но он может использоваться, например, для отделения маленьких
    и часто обновляемых данных от большого объема редко используемых.

  • Горизонтальное распределение (horizontal partitioning) - заключается в
    распределении данных одной таблицы по нескольким серверам. Фактически, на
    каждом сервере создается таблица такой же структуры, и в ней хранится
    определенная порция данных. Распределять данные по серверам можно по разным
    критериям: по диапазону (записи с id < 100000 идут на сервер А, остальные - на сервер Б), по списку значений (записи типа «ЗАО» и «ОАО» сохраняем на сервер
    А, остальные - на сервер Б) или по значению хэш-функции от некоторого поля
    записи. Горизонтальное разбиение данных позволяет хранить неограниченное
    количество записей, однако усложняет выборку. Наиболее эффективно можно выбирать
    записи только когда известно, на каком сервере они хранятся.

Для выбора правильной схемы распределения данных необходимо
внимательно проанализировать структуру базы. Существующие таблицы (и, возможно,
отдельные поля) можно классифицировать по частоте доступа к записям, по частоте
обновления и по взаимосвязям (необходимости делать выборки из нескольких
таблиц).

Как упоминалось выше, кроме базы данных сайту часто требуется
хранилище для бинарных файлов. Распределенные системы хранения файлов
(фактически, файловые системы) можно разделить на два класса.

  • Работающие на уровне операционной системы . При этом для
    приложения работа с файлами в такой системе не отличается от обычной работы с
    файлами. Обмен информацией между серверами берет на себя операционная система.
    В качестве примеров таких файловых систем можно привести давно известное
    семейство NFS или менее известную, но более современную систему Lustre.
  • Реализованные на уровне приложения распределенные
    хранилища подразумевают, что работу по обмену информацией производит само
    приложение. Обычно функции работы с хранилищем для удобства вынесены в
    отдельную библиотеку. Один из ярких примеров такого хранилища - MogileFS, разработанная
    создателями LiveJournal. Другой распространенный пример - использование
    протокола WebDAV и поддерживающего его хранилища.

Надо отметить, что распределение данных решает не только
вопрос хранения, но и частично вопрос распределения нагрузки - на каждом
сервере становится меньше записей, и потому обрабатываются они быстрее.
Сочетание методов распределения вычислений и данных позволяет построить
потенциально неограниченно-масштабируемую архитектуру, способную работать с
любым количеством данных и любыми нагрузками.

Выводы

Подводя итог сказанному, сформулируем выводы в виде кратких тезисов.

  • Две основные (и связанные между собой) задачи масштабирования - это распределение вычислений и распределение данных
  • Типичная архитектура сайта подразумевает разделение ролей и
    включает frontend, backend, базу данных и иногда хранилище файлов
  • При небольших объемах данных и больших нагрузках применяют
    зеркалирование базы данных - синхронную или асинхронную репликацию
  • При больших объемах данных необходимо распределить базу данных - разделить
    ее вертикально или горизонтально
  • Бинарные файлы хранятся в распределенных файловых системах
    (реализованных на уровне ОС или в приложении)
  • Балансировка (распределение запросов) может быть равномерная или
    с разделением по функционалу; с балансирующим узлом, либо на стороне клиента
  • Правильное сочетание методов позволит держать любые нагрузки;)

Ссылки

Продолжить изучение этой темы можно на интересных англоязычных сайтах и блогах.

Лучшие статьи по теме